Multidrug resistance (MDR) hinders efficacious cancer chemotherapy. Overexpression of the P-glycoprotein (P-gp) efflux pump (EP) on cancer cells is a primary cause of MDR since it expels numerous anticancer drugs. Small molecule intracellular P-gp antagonists have been investigated clinically to redress MDR but have failed primarily due to adverse effects on P-gp in normal tissue. We used a new approach to counteract P-gp with bispecific antibodies (BsAbs) that simultaneously bound P-gp and CD47 in cis on MDR cells but not normal tissue. Affinities of the individual arms of the BsAbs were low enough to minimize normal tissue binding, but, when the two targets were co-located on MDR cancer cells, both arms of the BsAb engaged with effective avidity. Proof-of-concept was shown in three different MDR xenograft tumor models with a non-humanized chimeric BsAb (targeting P-gp and CD47) that potently restored tumor sensitivity to paclitaxel. Fully humanized variants were successfully developed and characterized. Significant anti-tumor efficacy was observed with the BsAbs both when combined with paclitaxel and as single agents in the absence of paclitaxel. Treatment of MDR cancers with BsAbs using this novel approach has several distinct advantages over prior efforts with small molecule antagonists, including 1) invoking a direct immune attack on the tumors, 2) multimodal mechanisms of action, 3) tumor-specific targeting (with reduced toxicity to normal tissue), and 4) broad applicability as single agents and compatibility with other therapeutics.