Ordered Bose Glass of Vortices in Superconducting YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7−<i>δ</i></sub> Thin Films with a Periodic Pin Lattice Created by Focused Helium Ion Irradiation
Lucas Backmeister,
Bernd Aichner,
Max Karrer,
Katja Wurster,
Reinhold Kleiner,
Edward Goldobin,
Dieter Koelle,
Wolfgang Lang
Affiliations
Lucas Backmeister
Faculty of Physics, University of Vienna, A-1090 Wien, Austria
Bernd Aichner
Faculty of Physics, University of Vienna, A-1090 Wien, Austria
Max Karrer
Physikalisches Institut, Center for Quantum Science (CQ) and LISA<sup>+</sup>, Universität Tübingen, D-72076 Tübingen, Germany
Katja Wurster
Physikalisches Institut, Center for Quantum Science (CQ) and LISA<sup>+</sup>, Universität Tübingen, D-72076 Tübingen, Germany
Reinhold Kleiner
Physikalisches Institut, Center for Quantum Science (CQ) and LISA<sup>+</sup>, Universität Tübingen, D-72076 Tübingen, Germany
Edward Goldobin
Physikalisches Institut, Center for Quantum Science (CQ) and LISA<sup>+</sup>, Universität Tübingen, D-72076 Tübingen, Germany
Dieter Koelle
Physikalisches Institut, Center for Quantum Science (CQ) and LISA<sup>+</sup>, Universität Tübingen, D-72076 Tübingen, Germany
Wolfgang Lang
Faculty of Physics, University of Vienna, A-1090 Wien, Austria
The defect-rich morphology of YBa2Cu3O7−δ (YBCO) thin films leads to a glass-like arrangement of Abrikosov vortices which causes the resistance to disappear in vanishing current densities. This vortex glass consists of entangled vortex lines and is identified by a characteristic scaling of the voltage–current isotherms. Randomly distributed columnar defects stratify the vortex lines and lead to a Bose glass. Here, we report on the observation of an ordered Bose glass in a YBCO thin film with a hexagonal array of columnar defects with 30 nm spacings. The periodic pinning landscape was engineered by a focused beam of 30 keV He+ ions in a helium-ion microscope.