Cytotoxic Minor Piericidin Derivatives from the Actinomycete Strain <i>Streptomyces</i> <i>psammoticus</i> SCSIO NS126
Kunlong Li,
Ziqi Su,
Yongli Gao,
Xiuping Lin,
Xiaoyan Pang,
Bin Yang,
Huaming Tao,
Xiaowei Luo,
Yonghong Liu,
Xuefeng Zhou
Affiliations
Kunlong Li
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Ziqi Su
School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
Yongli Gao
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
Xiuping Lin
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Xiaoyan Pang
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Bin Yang
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Huaming Tao
School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
Xiaowei Luo
Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
Yonghong Liu
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Xuefeng Zhou
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
The mangrove-sediment-derived actinomycete strain Streptomyces psammoticus SCSIO NS126 was found to have productive piericidin metabolites featuring anti-renal cell carcinoma activities. In this study, in order to explore more diverse piericidin derivatives, and therefore to discover superior anti-tumor lead compounds, the NS126 strain was further fermented at a 300-L scale under optimized fermentation conditions. As a result, eight new minor piericidin derivatives (piericidins L-R (1–7) and 11-demethyl-glucopiericidin A (8)) were obtained, along with glucopiericidin B (9). The new structures including absolute configurations were determined by spectroscopic methods coupled with experimental and calculated electronic circular dichroism. We also proposed plausible biosynthetic pathways for these unusual post-modified piericidins. Compounds 1 and 6 showed selective cytotoxic activities against OS-RC-2 cells, and 2–5 exhibited potent cytotoxicity against HL-60 cells, with IC50 values lower than 0.1 μM. The new piericidin glycoside 8 was cytotoxic against ACHN, HL-60 and K562, with IC50 values of 2.3, 1.3 and 5.5 μM, respectively. The ability to arrest the cell cycle and cell apoptosis effects induced by 1 and 6 in OS-RC-2 cells, 2 in HL-60 cells, and 8 in ACHN cells were then further investigated. This study enriched the structural diversity of piericidin derivatives and confirmed that piericidins deserve further investigations as promising anti-tumor agents.