AIMS Mathematics (Jul 2024)

Some zero product preserving additive mappings of operator algebras

  • Wenbo Huang ,
  • Jiankui Li,
  • Shaoze Pan

DOI
https://doi.org/10.3934/math.20241080
Journal volume & issue
Vol. 9, no. 8
pp. 22213 – 22224

Abstract

Read online

Let $ \mathcal{M} $ be a von Neumann algebra without direct commutative summands, and let $ \mathcal{A} $ be an arbitrary subalgebra of $ LS(\mathcal{M}) $ containing $ \mathcal{M}, $ where $ LS(\mathcal{M}) $ is the $ ^{\ast} $-algebra of all locally measurable operators with respect to $ \mathcal{M} $. Suppose $ \delta $ is an additive mapping from $ \mathcal{A} $ to $ LS(\mathcal{M}) $ that satisfies the condition $ \delta(A)B^{\ast}+A\delta(B)+\delta(B)A^{\ast}+B\delta(A) = 0 $ whenever $ AB = BA = 0. $ In this paper, we prove that there exists an element $ Y $ in $ LS(\mathcal{M}) $ such that $ \delta(X) = XY-YX^{\ast}, $ for every $ X $ in $ \mathcal{A}. $

Keywords