Future Internet (Dec 2024)

WiFi Fingerprint Indoor Localization Employing Adaboost and Probability-One Access Point Selection for Multi-Floor Campus Buildings

  • Shanyu Jin,
  • Dongwoo Kim

DOI
https://doi.org/10.3390/fi16120466
Journal volume & issue
Vol. 16, no. 12
p. 466

Abstract

Read online

Indoor positioning systems have become increasingly important due to the rapid expansion of Internet of Things (IoT) technologies, especially for providing precise location-based services in complex environments such as multi-floor campus buildings. This paper presents a WiFi fingerprint indoor localization system based on AdaBoost, combined with a new access point (AP) filtering technique. The system comprises offline and online phases. During the offline phase, a fingerprint database is created using received signal strength (RSS) values for two four-floor campus buildings. In the online phase, the AdaBoost classifier is used to accurately estimate locations. To improve localization accuracy, APs that always appear in the measurement data are selected for applying the AdaBoost algorithm, aiming to eliminate noise from the fingerprint database. The performance of the proposed method is compared with other well-known machine learning-based positioning algorithms in terms of positioning accuracy and error distances. The results indicate that the average positioning accuracy of the proposed scheme reaches 95.55%, which represents an improvement of 5.55% to 16.21% over the other methods. Additionally, the two-dimensional positioning error can be reduced to 0.25 m.

Keywords