Applied Sciences (Feb 2021)

Emergency Repair Scheduling Model for Road Network Integrating Rescheduling Feature

  • Shu-Shun Liu,
  • Muhammad Faizal Ardhiansyah Arifin,
  • Wei Tong Chen,
  • Ying-Hua Huang

DOI
https://doi.org/10.3390/app11041447
Journal volume & issue
Vol. 11, no. 4
p. 1447

Abstract

Read online

When a natural disaster occurs, road maintenance departments always face the challenge of how to assign repair resources properly to recover damaged road segments as soon as possible. From the literature review, most studies treat such problems as a vehicle routing problem (VRP). In those studies, repair resources are always dispatched as complete crews, and cannot be divided into smaller scales. Furthermore, each disaster point is only allowed one group of resources to recover it, without considering the possibility of accelerating the production rate subjected to specific objectives. Such limitation restricts required resources in an inflexible manner. Therefore, this study defines all repair works as an emergency repair project and adopts the framework of the Resource-Constrained Project Scheduling Problem (RCPSP), which can resolve such complicated resource assignment issue. A novel emergency repair scheduling model for the road network is proposed based on Constraint Programming (CP) as the searching algorithm to facilitate model formulation. According to the RCPSP concepts, disaster points are set as repair activities and resource travel routes between disaster points are set as transit activities. All the repair activities are linked by transit activities and the required resources are assigned accordingly. In order to consider the second-wave hazard events of where new disaster points may occur, and new resources may be added into emergency repair projects, a rescheduling feature is integrated into the proposed model. Through two case studies, research findings show that this model can be easily modulated to adapt to different situations satisfying practical disaster management goals and solving emergency repair scheduling problems for road networks efficiently.

Keywords