Applied Sciences (Jun 2023)

Design of N-Way Wilkinson Power Dividers with New Input/Output Arrangements for Power-Halving Operations

  • Ceyhun Karpuz,
  • Mehmet Cakir,
  • Ali Kursad Gorur,
  • Adnan Gorur

DOI
https://doi.org/10.3390/app13116852
Journal volume & issue
Vol. 13, no. 11
p. 6852

Abstract

Read online

In this paper, new single/double-layer N-way Wilkinson power dividers (WPDs) were designed by using slow-wave structures such as narrow-slit-loaded and meandered transmission lines. For size reduction, the slit-loaded and meandered lines were used instead of the quarter-wavelength transmission lines of a conventional WPD. Based on the proposed approaches, two-, four-, and eight-way power dividers were designed, simulated, and fabricated. The fabricated 2-, 4-, and 8-way circuits were measured at the center frequencies of 2.03, 1.77, and 1.73 GHz, which are in excellent agreement with the predicted ones. The meandered transmission lines were also used to design WPD types with novel input/output port arrangements. For this purpose, two three-way WPDs were located on both sides of the same board to have different power-splitting ratios at different inputs and outputs in order to provide alternative solutions for antenna arrays. Furthermore, a five-way dual-layer WPD was introduced by locating the meandered transmission lines into two layers. The most important advantage of the proposed 3- and 5-way WPDs is that they allowed the input power at the next output port to be halved, in the order of P/2, P/4, P/8, P/16, and P/16. All the designed power-halving WPDs were simulated, fabricated, and successfully tested.

Keywords