Quantification and Diversity Analyses of Glucosinolates in 191 Broccoli Genotypes Highlight Valuable Genetic Resources for Molecular Breeding
Meijia Yan,
Chenxue Song,
Shiwen Su,
Junliang Li,
Zhiwei Hu,
Sue Lin,
Huixi Zou,
Zheng Tang,
Xiufeng Yan
Affiliations
Meijia Yan
National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China
Chenxue Song
National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China
Shiwen Su
Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
Junliang Li
National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China
Zhiwei Hu
National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China
Sue Lin
National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China
Huixi Zou
National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China
Zheng Tang
Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
Xiufeng Yan
National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China
Glucosinolates (GSLs), crucial secondary metabolites in cruciferous vegetables, hydrolyze upon consumption or mechanical damage, forming bioactive compounds with anti-cancer properties, such as glucoraphanin (GRA). Among cruciferous vegetables, broccoli stands out for its high GSL content, which varies significantly among different genotypes. This study aimed to characterize and quantify glucosinolate compounds in broccoli using LC-HRMS2 and UPLC. We identified thirteen GSLs in 191 broccoli genotypes, including seven aliphatic, five indole, and one aromatic glucosinolate. The GSL content in these genotypes ranged from 0.1705 to 5.8174 mg/g (DW). We also explored GSL diversity and content in seven developmental organs, finding high diversity and content in seedling roots and florets. Notably, genotype No. 300 had the highest GSL content (5.8174 mg/g, DW) and GRA (3.1545 mg/g, DW), along with a larger flower bulb diameter (13.4 cm) and a shorter growth stage (11 days), demonstrating its potential for breeding GRA-rich broccoli. To our knowledge, this study encompasses the largest number of broccoli genotypes to date, broadening our understanding of GSLs’ diversity and content in broccoli. These findings may provide valuable resources for future breeding or the commercial cultivation of GRA-rich broccoli.