Advances in Difference Equations (Dec 2017)

Some identities involving generalized Gegenbauer polynomials

  • Zhaoxiang Zhang

DOI
https://doi.org/10.1186/s13662-017-1445-2
Journal volume & issue
Vol. 2017, no. 1
pp. 1 – 12

Abstract

Read online

Abstract In this paper, we investigate some interesting identities on the Bernoulli, Euler, Hermite and generalized Gegenbauer polynomials arising from the orthogonality of generalized Gegenbauer polynomials in the generalized inner product 〈 p 1 ( x ) , p 2 ( x ) 〉 = ∫ − α q p α q p ( α q − p 2 x 2 ) λ − 1 2 p 1 ( x ) p 2 ( x ) d x . $$\bigl\langle {{p_{1}}(x),{p_{2}}(x)} \bigr\rangle = \int_{ - \frac{{\sqrt{\alpha q}}}{p}}^{\frac{{\sqrt{ \alpha q} }}{p}} {{\bigl(\alpha q - p^{2}{x^{2}}\bigr)}^{\lambda - \frac{1}{2}}} {p_{1}}(x){p_{2}}(x)\,dx. $$

Keywords