BMC Cancer (Apr 2021)
Assessing tumor angiogenesis using dynamic contrast-enhanced integrated magnetic resonance-positron emission tomography in patients with non-small-cell lung cancer
Abstract
Abstract Background Angiogenesis assessment is important for personalized therapeutic intervention in patients with non-small-cell lung cancer (NSCLC). This study investigated whether radiologic parameters obtained by dynamic contrast-enhanced (DCE)-integrated magnetic resonance-positron emission tomography (MR-PET) could be used to quantitatively assess tumor angiogenesis in NSCLC. Methods This prospective cohort study included 75 patients with NSCLC who underwent DCE-integrated MR-PET at diagnosis. The following parameters were analyzed: metabolic tumor volume (MTV), maximum standardized uptake value (SUVmax), reverse reflux rate constant (k ep), volume transfer constant (K trans), blood plasma volume fraction (v p ), extracellular extravascular volume fraction (v e ), apparent diffusion coefficient (ADC), and initial area under the time-to-signal intensity curve at 60 s post enhancement (iAUC60). Serum biomarkers of tumor angiogenesis, including vascular endothelial growth factor-A (VEGF-A), angiogenin, and angiopoietin-1, were measured by enzyme-linked immunosorbent assays simultaneously. Results Serum VEGF-A (p = 0.002), angiogenin (p = 0.023), and Ang-1 (p 30 cm3 (p = 0.046), K trans > 200 10− 3/min (p = 0.069), and k ep > 900 10− 3/min (p = 0.048), may have benefited from angiogenesis inhibitor therapy, which thus led to significantly longer overall survival. Conclusions The present findings suggest that DCE-integrated MR-PET provides a reliable, non-invasive, quantitative assessment of tumor angiogenesis; can guide the use of angiogenesis inhibitors toward longer survival; and will play an important role in the personalized treatment of NSCLC.
Keywords