Open Physics (Nov 2017)
New analytical solutions for conformable fractional PDEs arising in mathematical physics by exp-function method
Abstract
Modelling of physical systems mathematically, produces nonlinear evolution equations. Most of the physical systems in nature are intrinsically nonlinear, therefore modelling such systems mathematically leads us to nonlinear evolution equations. The analysis of the wave solutions corresponding to the nonlinear partial differential equations (NPDEs), has a vital role for studying the nonlinear physical events. This article is written with the intention of finding the wave solutions of Nizhnik-Novikov-Veselov and Klein-Gordon equations. For this purpose, the exp-function method, which is based on a series of exponential functions, is employed as a tool. This method is an useful and suitable tool to obtain the analytical solutions of a considerable number of nonlinear FDEs within a conformable derivative.
Keywords