Batteries (Nov 2022)

Physics-Based SoH Estimation for Li-Ion Cells

  • Pietro Iurilli,
  • Claudio Brivio,
  • Rafael E. Carrillo,
  • Vanessa Wood

DOI
https://doi.org/10.3390/batteries8110204
Journal volume & issue
Vol. 8, no. 11
p. 204

Abstract

Read online

Accurate state of health (SoH) estimation is crucial to optimize the lifetime of Li-ion cells while ensuring safety during operations. This work introduces a methodology to track Li-ion cells degradation and estimate SoH based on electrochemical impedance spectroscopy (EIS) measurements. Distribution of relaxation times (DRT) were exploited to derive indicators linked to the so-called degradation modes (DMs), which group the different aging mechanisms. The combination of these indicators was used to model the aging progression over the whole lifetime (both in the “pre-knee” and “after-knee” regions), enabling a physics-based SoH estimation. The methodology was applied to commercial cylindrical cells (NMC811|Graphite SiOx). The results showed that loss of lithium inventory (LLI) is the main driving factor for cell degradation, followed by loss of cathode active material (LAMC). SoH estimation was achievable with a mean absolute error lower than 0.75% for SoH values higher than 85% and lower than 3.70% SoH values between 85% and 80% (end of life). The analyses of the results will allow for guidelines to be defined to replicate the presented methodology, characterize new Li-ion cell types, and perform onboard SoH estimation in battery management system (BMS) solutions.

Keywords