NeuroSci (May 2022)
Dysregulation of a Heme Oxygenase–Synuclein Axis in Parkinson Disease
Abstract
α-Synuclein is a key driver of the pathogenesis of Parkinson disease (PD). Heme oxygenase-1 (HO-1), a stress protein that catalyzes the conversion of heme to biliverdin, carbon monoxide and free ferrous iron, is elevated in PD-affected neural tissues and promotes iron deposition and mitochondrial dysfunction in models of the disease, pathways also impacted by α-synuclein. Elevated expression of human HO-1 in astrocytes of GFAP.HMOX1 transgenic mice between 8.5 and 19 months of age elicits a parkinsonian phenotype characterized by nigrostriatal hypodopaminergia, locomotor incoordination and overproduction of neurotoxic native S129-phospho-α-synuclein. Two microRNAs (miRNA) known to regulate α-synuclein, miR-153 and miR-223, are significantly decreased in the basal ganglia of GFAP.HMOX1 mice. Serum concentrations of both miRNAs progressively decline in wild-type (WT) and GFAP.HMOX1 mice between 11 and 18 months of age. Moreover, circulating levels of miR-153 and miR-223 are significantly lower, and erythrocyte α-synuclein concentrations are increased, in GFAP.HMOX1 mice relative to WT values. MiR-153 and miR-223 are similarly decreased in the saliva of PD patients compared to healthy controls. Upregulation of glial HO-1 may promote parkinsonism by suppressing miR-153 and miR-223, which, in turn, enhance production of neurotoxic α-synuclein. The aim of the current review is to explore the link between HO-1, α-synuclein and PD, evaluating evidence derived from our laboratory and others. HO-1, miR-153 and miR-223 and α-synuclein may serve as potential biomarkers and targets for disease-modifying therapy in idiopathic PD.
Keywords