Electronic Journal of Qualitative Theory of Differential Equations (Dec 2021)

Multiple positive solutions for a logarithmic Schrödinger–Poisson system with singular nonelinearity

  • Linyan Peng,
  • Hongmin Suo,
  • Deke Wu,
  • Hongxi Feng,
  • Chunyu Lei

DOI
https://doi.org/10.14232/ejqtde.2021.1.90
Journal volume & issue
Vol. 2021, no. 90
pp. 1 – 15

Abstract

Read online

In this article, we devote ourselves to investigate the following logarithmic Schrödinger–Poisson systems with singular nonlinearity \begin{equation*} \begin{cases} -\Delta u+\phi u= |u|^{p-2}u\log|u|+\frac{\lambda}{u^\gamma}, &\rm \mathrm{in}\ \Omega, \\ -\Delta \phi=u^{2}, &\rm \mathrm{in}\ \Omega, \\ u=\phi=0, &\rm \mathrm{on}\ \partial\Omega, \end{cases} \end{equation*} where $\Omega$ $\subset$ $\mathbb{R}^3$ is a smooth bounded domain with boundary $\partial\Omega$, $00$ is a real parameter. By using the critical point theory for nonsmooth functional and variational method, the existence and multiplicity of positive solutions are established.

Keywords