Brazilian Journal of Medical and Biological Research (Mar 2025)

1α,25-Dihydroxyvitamin D3 accelerates skin wound re-epithelialization by promoting epidermal stem cell proliferation and differentiation through PI3K activation: an in vitro and in vivo study

  • Rongshuai Yan,
  • Zhihui Liu,
  • Song Wang,
  • Dongli Fan

DOI
https://doi.org/10.1590/1414-431x2025e14121
Journal volume & issue
Vol. 58

Abstract

Read online Read online

1α,25-Dihydroxyvitamin D3 (VD3), the active form of vitamin D, plays a crucial role in wound healing. In this study, we aimed to investigate the effect of VD3 on the proliferation and differentiation of epidermal stem cells (EpSCs) and monitor its impact on re-epithelialization. We established a murine full-thickness skin defect model and applied four doses of VD3 (0, 5, 50, and 250 ng/mouse/day) to the wounds topically for three days. Immunostaining and flow cytometry confirmed the effect of VD3 on the proliferation and differentiation of EpSCs in wounds. This effect of VD3 (0, 1, 10, and 50 nM) on EpSCs and its possible mechanism were further confirmed in vitro by CCK8, westen blot, immunostaining, and flow cytometry. We found that on day five post-wounding, the means±SD length of the neo-epidermis was 195.88±11.57, 231.84±16.45, 385.80±17.50, and 268.00±8.22 μm in the control, 5, 50, and 250 ng groups, respectively, with a significant difference from the control (all P<0.05). Immunostaining and flow cytometry showed that VD3 improved the proliferation and differentiation of K15+ EpSC (vs control, all P<0.05), K14+ epidermal progenitor cells (vs control, all P<0.05), and K10+ epidermal terminal cells (vs control, all P<0.05) in vivo and in vitro. The PI3K signaling pathway appeared to underlie this response because significant inhibition of the response was found when inhibitors were used to inhibit PI3K. Our study demonstrated that VD3 is a potent promoter of cutaneous wound healing by stimulating EpSC proliferation and differentiation through PI3K activation.

Keywords