Heliyon (Nov 2024)

Development, optimization, and characterization of polymeric micelles to improve dasatinib oral bioavailability: Hep G2 cell cytotoxicity and in vivo pharmacokinetics for targeted liver cancer therapy

  • Rehan shaikh,
  • Sankha Bhattacharya,
  • Suprit D. Saoji

Journal volume & issue
Vol. 10, no. 21
p. e39632

Abstract

Read online

The efficacy of dasatinib (DAS) in treating hepatocellular carcinoma (HCC) is hindered by its poor bioavailability, limiting its clinical potential. In this study, we explored the use of TPGS-Soluplus micelles as an innovative drug delivery platform to enhance DAS solubility, stability, and therapeutic impact. A series of TPGS-Soluplus copolymers were synthesized, varying the D-α-tocopheryl polyethylene glycol succinate (TPGS) forms (1000, 2000, and 3500) and adjusting the TPGS to Soluplus weight ratios (1:1, 1:2, and 1:3). Our goal was to identify the optimal formulation with the highest entrapment efficiency, smallest particle size, and enhanced drug loading. The TPGS1000-Soluplus copolymer, with a DAS-to-polymer ratio of 1:30 and a TPGS ratio of 1:2, demonstrated superior performance, achieving an entrapment efficiency of 64.479 ± 1.45 % and drug loading of 5.05 ± 1.01 %. The DAS-loaded micelles (DAS-PMs) exhibited a notably small particle size of 64.479 ± 1.45 nm and demonstrated controlled release kinetics, with 85.60 ± 5.4 % of the drug released over 72 h.Cellular uptake studies using Hep G2 cells revealed significantly enhanced absorption of DAS-PMs compared to free DAS, reflected in lower IC50 values in MTT assays at 24 and 48 h. Pharmacokinetic analysis further highlighted the benefits of the DAS-PMs, with an AUC0-∞ 2.16 times higher and mean residual time (MRT) 1.3 times longer than free DAS, a statistically significant improvement (p < 0.01). These findings suggest that TPGS-Soluplus micelles offer a promising strategy for improving the bioavailability and efficacy of DAS in HCC treatment, presenting a potential new therapeutic avenue for patients with limited options. This innovative formulation could significantly enhance DAS delivery, potentially leading to improved clinical outcomes in liver cancer therapy.

Keywords