BMC Gastroenterology (Aug 2017)

Protective effects of heme oxygenase-1 against severe acute pancreatitis via inhibition of tumor necrosis factor-α and augmentation of interleukin-10

  • Fei-hu Zhang,
  • Yu-han Sun,
  • Kai-liang Fan,
  • Xiao-bin Dong,
  • Ning Han,
  • Hao Zhao,
  • Li Kong

DOI
https://doi.org/10.1186/s12876-017-0651-4
Journal volume & issue
Vol. 17, no. 1
pp. 1 – 7

Abstract

Read online

Abstract Background Heme oxygenase-1 (HO-1) is an inducible defense gene which plays a significant role in inflammation. HO-1 protects cells and tissues through the mechanism of anti-oxidation, maintaining microcirculation and anti-inflammation. The aim of the current study is to investigate the role of HO-1 on systemic inflammatory response in severe acute pancreatitis (SAP). Methods Forty male Sprague-Dawley (SD) rats were randomly assigned into four groups: control group (n = 10); SAP group (n = 10), SAP model was induced by retrograde injection of 3% sodium taurocholate through pancreatic duct; HO-1 stimulation group (n = 10), SD rats were injected 75 μg/kg hemin intraperitoneally 30 min after induction of SAP; HO-1 inhibition group (n = 10), SD rats were injected 20 μg/kg Zinc porphyrin (Zn-PP) intraperitoneally 30 min after induction of SAP. After 24 h of SAP establishment, tissues were collected for HO-1, tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) mRNA expression, and blood samples were collected for cytokines and biochemical measurements. Meanwhile, the histopathological changes of pancreas and liver tissues were observed. Results The expression of HO-1 mRNA and protein were significantly induced by SAP in rat pancreas and liver. Hemin treatment significantly decreased oxidative stress and TNF-α in plasma and tissues, while the IL-10 was significantly increased. Pancreas and liver injury induced by SAP was markedly attenuated by Hemin treatment. Moreover, inhibition of HO-1 expression by Zn-PP administration aggravated the injury caused by SAP. Conclusions Induction of HO-1 in early SAP may modulate systemic inflammatory response and prevent pancreas and nearby organs such as liver injury through inhibition of TNF-α and augmentation of IL-10.

Keywords