Energies (May 2019)

A Coupled Model of Two-Phase Fluid Flow and Heat Transfer to Transient Temperature Distribution and Seepage Characteristics for Water-Flooding Production Well with Multiple Pay Zones

  • Guoshu Huang,
  • Huolin Ma,
  • Xiangyun Hu,
  • Jianchao Cai,
  • Jiabin Li,
  • Hongqing Luo,
  • Heping Pan

DOI
https://doi.org/10.3390/en12101854
Journal volume & issue
Vol. 12, no. 10
p. 1854

Abstract

Read online

Temperature is one of the most prominent factors affecting production operations, predicting the accurate wellbore-formation temperature in a water-flooding production well is of great importance for multiple applications. In this paper, an improved coupled model of oil–water two-phase fluid flow and heat transfer was developed to investigate the transient temperature behavior for a producing well with multiple pay zones. Firstly, a novel method was derived to simulate the water saturation and the water breakthrough time (WBT) for tubing, which are key monitoring parameters in the process of water flooding. Then, we incorporated water saturation and an equation set for immiscible displacement to calculate the seepage velocity and the pressure of the two-phase fluid in the pay zones. Next, the upward seepage velocity of the tubing fluid change with depth was focused on, and the proper coupled initial and boundary conditions are presented at the interfaces, therewith the implicit finite difference method was used to compute the transient temperature with the input of the seepage characteristics for the reservoirs. Meanwhile, the validity of the proposed model has been verified by the typical model. Finally, a sensitivity analysis delineated that the production rate and the production time had a significant impact on the tubing fluid temperature. The overburden was hotter with a lower volumetric heat capacity or a higher thermal conductivity. In addition, the sensitivity of the porosity and the irreducible water saturation to formation temperature was significantly different before and after the WBT. The coupled model presented herein helps to advance the transient seepage characteristics analysis of pay zones, the precise temperature prediction is very useful for reservoir characterization and production analysis purposes and provides insight for designing the exploitation scheme in deep reservoirs and geothermal resources.

Keywords