Reactions (May 2022)
Catalytic Performances of Sn-Beta Catalysts Prepared from Different Heteroatom-Containing Beta Zeolites for the Retro-Aldol Fragmentation of Glucose
Abstract
Beta zeolites with different heteroatoms incorporated into the lattice at two loadings (Si/M = 100 or 200, where M = Al, Fe, Ga, B) were hydrothermally synthesised and used as starting materials for the preparation of Sn-Beta using Solid-State Incorporation. 119Sn CPMG MAS NMR showed that various Sn species were formed, the distribution of which depended on the identity of the initial heteroatom and the original Si/M ratio. The final Sn-Beta materials (with Si/Sn = 200) were explored as catalysts for the retro-aldol fragmentation of glucose to α-hydroxy-esters in the continuous regime. Amongst these materials, B-derived Sn-Beta was found to exhibit improved levels of selectivity and stability, particularly compared to Sn-Beta catalysts synthesised from commercially available Al-Beta materials, achieving a combined yield of methyl lactate and methyl vinyl glycolate > 80% at short times on the stream. Given that B atoms can be removed from the Beta lattice in mild conditions without the use of highly concentrated acidic media, this discovery demonstrates that B-Beta is an attractive starting material for the future post-synthetic preparation of Lewis acidic zeolites.
Keywords