Plant Signaling & Behavior (Dec 2022)
Synaptotagmin 4 and 5 additively contribute to Arabidopsis immunity to Pseudomonas syringae DC3000
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are essential for vesicle trafficking in plants. Vesicle-associated membrane protein 721 and 722 (VAMP721/722) are secretory vesicle-localized R-SNAREs, which are involved in a variety of biological processes in plants. Compared to VAMP721/722, a VAMP721/722-interacting plasma membrane (PM)-localized Qa-SNARE is engaged in a rather specific physiological process. This indicates that an in vivo regulator controls an interaction between a Qa-SNARE and VAMP721/722 for a specific cellular activity. We previously reported that synaptotagmin 5 (SYT5) modulates the interaction between SYP132 PM Qa-SNARE and VAMP721/722 for Arabidopsis resistance to Pseudomonas syringae DC3000. In this study, we show that defense against P. syringae DC3000 is compromised in SYT4-lacking plants, which belongs to the same subclade as SYT5. Further elevation of bacterial growth in syt4 syt5-2 plants compared to either syt4 or syt5-2 single mutant suggests that SYT4 and SYT5 play additive roles in Arabidopsis immunity to P. syringae DC3000.
Keywords