EPJ Web of Conferences (Jan 2019)
The use of adversaries for optimal neural network training
Abstract
B-decay data from the Belle experiment at the KEKB collider have a substantial background from e+e- -h> qq¯ events. To suppress this we employ deep neural network algorithms. These provide improved signal from background discrimination. However, the deep neural network develops a substantial correlation with the ∆E kinematic variable used to distinguish signal from background in the final fit due to its relationship with input variables. The effect of this correlation is reduced by deploying an adversarial neural network. Over-all the adversarial deep neural network performs better than a Boosted Decision Tree algorithimn and a commercial package, NeuroBayes, which employs a neural net with a single hidden layer.