Effect of magneto-induced electric field on the physicochemical, structural, and rheological properties of citrus pectin at different pH values
Ming-Yu Jin,
Luobang Wu,
Yahui Yu,
Long-Qing Li,
Xiangying Yu,
Xiaozhen Liu,
Fengyuan Liu,
Yuting Li,
Jing-Kun Yan
Affiliations
Ming-Yu Jin
Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
Luobang Wu
Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
Yahui Yu
Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
Long-Qing Li
Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
Xiangying Yu
Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
Xiaozhen Liu
Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
Fengyuan Liu
Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
Yuting Li
Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
Jing-Kun Yan
Corresponding author.; Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
This study examined the effect of magneto-induced electric field (MIEF) treatment under varying pH conditions on the physicochemical, structural, and rheological properties of citrus pectin (CP). The results indicate that as the pH increased (to 4.0, 7.0, and 10.0), the molecular weight, degree of esterification, and galacturonic acid content of CP decreased. At pH values of 4.0 and 7.0, MIEF treatment caused fractures in the side chains of CP, while at pH 10.0, the main chain broke. MIEF treatment under these conditions enhanced the steady-state fluid behavior and dynamic viscoelastic properties of CP by promoting increased entanglements of neutral sugar side chains. Overall, the combined effect of pH and MIEF led to the breakdown of the main or side chains of CP, reducing its molecular weight and thereby influencing its rheological properties. In effect, this study provides a green modification technique for CP and its application to functional foods.