Polymers (Mar 2023)

Fabricating Well-Dispersed Poly(Vinylidene Fluoride)/Expanded Graphite Composites with High Thermal Conductivity by Melt Mixing with Maleic Anhydride Directly

  • Jun Tong,
  • Huannan Zheng,
  • Jinwei Fan,
  • Wei Li,
  • Zhifeng Wang,
  • Haichen Zhang,
  • Yi Dai,
  • Haichu Chen,
  • Ziming Zhu

DOI
https://doi.org/10.3390/polym15071747
Journal volume & issue
Vol. 15, no. 7
p. 1747

Abstract

Read online

Maleic anhydride (MA) is introduced to fabricate poly(vinylidene fluoride)/expanded graphite (PVDF/EG) composites via one-step melt mixing. SEM micrographs and WAXD results have demonstrated that the addition of MA helps to exfoliate and disperse the EG well in the PVDF matrix by promoting the mobility of PVDF molecular chains and enhancing the interfacial adhesion between the EG layers and the PVDF. Thus, much higher thermal conductivities are obtained for the PVDF/MA/EG composites compared to the PVDF/EG composites that are lacking MA. For instance, The PVDF/MA/EG composite prepared with a mass ratio of 93:14:7 exhibits a high thermal conductivity of up to 0.73 W/mK. It is 32.7% higher than the thermal conductivity of the PVDF/EG composite that is prepared with a mass ratio of 93:7. Moreover, the introduction of MA leads to an increased melting peak temperature and crystallinity due to an increased nucleation site provided by the uniformly dispersed EG in the PVDF matrix. This study provides an efficient preparation method for PVDF/EG composites with a high thermal conductivity.

Keywords