International Journal of Molecular Sciences (Jan 2024)

The Anticancer Effects of the Garlic Organosulfide Diallyl Trisulfide through the Attenuation of B[a]P-Induced Oxidative Stress, AhR Expression, and DNA Damage in Human Premalignant Breast Epithelial (MCF-10AT1) Cells

  • Dominique T. Ferguson,
  • Equar Taka,
  • Syreeta L. Tilghman,
  • Tracy Womble,
  • Bryan V. Redmond,
  • Shasline Gedeon,
  • Hernan Flores-Rozas,
  • Sarah L. Reed,
  • Karam F. A. Soliman,
  • Konan J. W. Kanga,
  • Selina F. Darling-Reed

DOI
https://doi.org/10.3390/ijms25020923
Journal volume & issue
Vol. 25, no. 2
p. 923

Abstract

Read online

Benzo[a]pyrene (B[a]P) is the most characterized polycyclic aromatic hydrocarbon associated with breast cancer. Our lab previously reported that the organosulfur compound (OSC), diallyl trisulfide (DATS), chemoprevention mechanism works through the induction of cell cycle arrest and a reduction in oxidative stress and DNA damage in normal breast epithelial cells. We hypothesize that DATS will inhibit B[a]P-induced cancer initiation in premalignant breast epithelial (MCF-10AT1) cells. In this study, we evaluated the ability of DATS to attenuate B[a]P-induced neoplastic transformation in MCF-10AT1 cells by measuring biological endpoints such as proliferation, clonogenicity, reactive oxygen species (ROS) formation, and 8-hydroxy-2-deoxyguanosine (8-OHdG) DNA damage levels, as well as DNA repair and antioxidant proteins. The results indicate that B[a]P induced proliferation, clonogenic formation, ROS formation, and 8-OHdG levels, as well as increasing AhR, ARNT/HIF-1β, and CYP1A1 protein expression compared with the control in MCF-10AT1 cells. B[a]P/DATS’s co-treatment (CoTx) inhibited cell proliferation, clonogenic formation, ROS formation, AhR protein expression, and 8-OHdG levels compared with B[a]P alone and attenuated all the above-mentioned B[a]P-induced changes in protein expression, causing a chemopreventive effect. This study demonstrates, for the first time, that DATS prevents premalignant breast cells from undergoing B[a]P-induced neoplastic transformation, thus providing more evidence for its chemopreventive effects in breast cancer.

Keywords