PLoS ONE (Jan 2020)

Conspecific and interspecific stimuli reduce initial performance in an aversive learning task in honey bees (Apis mellifera).

  • Christopher A Varnon,
  • Christopher W Dinges,
  • Adam J Vest,
  • Charles I Abramson

DOI
https://doi.org/10.1371/journal.pone.0228161
Journal volume & issue
Vol. 15, no. 2
p. e0228161

Abstract

Read online

The purpose of this experiment was to investigate whether honey bees (Apis mellifera) are able to use social discriminative stimuli in a spatial aversive conditioning paradigm. We tested bees' ability to avoid shock in a shuttle box apparatus across multiple groups when either shock, or the absence of shock, was associated with a live hive mate, a dead hive mate, a live Polistes exclamans wasp or a dead wasp. Additionally, we used several control groups common to bee shuttle box research where shock was only associated with spatial cues, or where shock was associated with a blue or yellow color. While bees were able to learn the aversive task in a simple spatial discrimination, the presence of any other stimuli (color, another bee, or a wasp) reduced initial performance. While the color biases we discovered are in line with other experiments, the finding that the presence of another animal reduces performance is novel. Generally, it appears that the use of bees or wasps as stimuli initially causes an increase in overall activity that interferes with early performance in the spatial task. During the course of the experiment, the bees habituate to the insect stimuli (bee or wasp), and begin learning the aversive task. Additionally, we found that experimental subject bees did not discriminate between bees or wasps used as stimulus animals, nor did they discriminate between live or dead stimulus animals. This may occur, in part, due to the specialized nature of the worker honey bee. Results are discussed with implications for continual research on honey bees as models of aversive learning, as well as research on insect social learning in general.