Earth System Science Data (Jun 2024)

LamaH-Ice: LArge-SaMple DAta for Hydrology and Environmental Sciences for Iceland

  • H. B. Helgason,
  • H. B. Helgason,
  • B. Nijssen

DOI
https://doi.org/10.5194/essd-16-2741-2024
Journal volume & issue
Vol. 16
pp. 2741 – 2771

Abstract

Read online

Access to mountainous regions for monitoring streamflow, snow and glaciers is often difficult, and many rivers are thus not gauged and hydrological measurements are limited. Consequently, cold-region watersheds, particularly heavily glacierized ones, are poorly represented in large-sample hydrology (LSH) datasets. We present a new LSH dataset for Iceland, termed LamaH-Ice (LArge-SaMple DAta for Hydrology and Environmental Sciences for Iceland). Glaciers and ice caps cover about 10 % of Iceland and, while streamflow has been measured for several decades, these measurements have not previously been published in a consistent manner. The dataset provides daily and hourly hydrometeorological time series and catchment characteristics for 107 river basins in Iceland, covering an area of almost 46 000 km2 (45 % of Iceland's area), with catchment sizes ranging from 4 to 7500 km2. LamaH-Ice conforms to the structure of existing LSH datasets and includes most variables contained in these datasets as well as additional information relevant to cold-region hydrology, e.g., time series of snow cover, glacier mass balance and albedo. LamaH-Ice also includes dynamic catchment characteristics to account for changes in land cover, vegetation and glacier extent. A large majority of the watersheds in LamaH-Ice are not subject to human activities, such as diversions and flow regulations. Streamflow measurements under natural flow conditions are highly valuable to hydrologists seeking to model and comprehend the natural hydrological cycle or estimate climate change trends. The LamaH-Ice dataset (Helgason and Nijssen, 2024) is intended for the research community to improve the understanding of hydrology in cold-region environments. LamaH-Ice is publicly available on HydroShare at https://doi.org/10.4211/hs.86117a5f36cc4b7c90a5d54e18161c91 (Helgason and Nijssen, 2024).