Cell Reports (Nov 2015)

A Metabolic Signature of Mitochondrial Dysfunction Revealed through a Monogenic Form of Leigh Syndrome

  • Julie Thompson Legault,
  • Laura Strittmatter,
  • Jessica Tardif,
  • Rohit Sharma,
  • Vanessa Tremblay-Vaillancourt,
  • Chantale Aubut,
  • Gabrielle Boucher,
  • Clary B. Clish,
  • Denis Cyr,
  • Caroline Daneault,
  • Paula J. Waters,
  • Azadeh Aliskashani,
  • Bruce G. Allen,
  • Chantale Aubut,
  • Claudine Beauchamp,
  • Chantal Bemeur,
  • Yan Burelle,
  • Guy Charron,
  • Lise Coderre,
  • Christine Des Rosiers,
  • Sonia Deschênes,
  • François Labarthe,
  • Jeannine Landry,
  • Catherine Laprise,
  • Geneviève Lavallée,
  • Pierre Lavoie,
  • Bruno Maranda,
  • Charles Morin,
  • Yvette Mukaneza,
  • Tamiko Nishimura,
  • John D. Rioux,
  • Marie-Ève Rivard,
  • Florin Sasarman,
  • Eric A. Shoubridge,
  • Jessica Tardif,
  • Julie Thompson Legault,
  • Nancy Tremblay,
  • Vanessa Tremblay-Vaillancourt,
  • Luc Vachon,
  • Josée Villeneuve

DOI
https://doi.org/10.1016/j.celrep.2015.09.054
Journal volume & issue
Vol. 13, no. 5
pp. 981 – 989

Abstract

Read online

A decline in mitochondrial respiration represents the root cause of a large number of inborn errors of metabolism. It is also associated with common age-associated diseases and the aging process. To gain insight into the systemic, biochemical consequences of respiratory chain dysfunction, we performed a case-control, prospective metabolic profiling study in a genetically homogenous cohort of patients with Leigh syndrome French Canadian variant, a mitochondrial respiratory chain disease due to loss-of-function mutations in LRPPRC. We discovered 45 plasma and urinary analytes discriminating patients from controls, including classic markers of mitochondrial metabolic dysfunction (lactate and acylcarnitines), as well as unexpected markers of cardiometabolic risk (insulin and adiponectin), amino acid catabolism linked to NADH status (α-hydroxybutyrate), and NAD+ biosynthesis (kynurenine and 3-hydroxyanthranilic acid). Our study identifies systemic, metabolic pathway derangements that can lie downstream of primary mitochondrial lesions, with implications for understanding how the organelle contributes to rare and common diseases.