EPJ Web of Conferences (Aug 2012)
Development of new Hopkinson’s device dedicated to rib’s bone characterisation
Abstract
This study presents an original approach for the design of adapted Hopkinson device dedicated to the characterisation of human ribs’ cortical bone. The quasi-static study carried out on flat samples coming from this anatomical part highlighted the importance of the critical effect of sample shape and location on the accuracy of identify mechanical behaviour. The access to higher rates of strains, Hopkinson bars technique are classically required whatever compression or tension loadings. Classical designs of measurement bars are not suitable for this purpose due to the complexity of specimen’s geometry (thickness variation). In this context, a new design of SHTB is studied here on the basis on a Finite Element approach of the set measurement bars/biological coupon. Finite Element simulations have been conducted using Abaqus explicit code by varying the design configuration. The comparison on input and output elastic waves suggests a set of small diameter bars in polyamide 66 for a better signal measurement.