Journal of Experimental & Clinical Cancer Research (2020-03-01)

Exosomal MALAT1 sponges miR-26a/26b to promote the invasion and metastasis of colorectal cancer via FUT4 enhanced fucosylation and PI3K/Akt pathway

  • Jingchao Xu,
  • Yang Xiao,
  • Bing Liu,
  • Shimeng Pan,
  • Qianqian Liu,
  • Yujia Shan,
  • Shuangda Li,
  • Yu Qi,
  • Yiran Huang,
  • Li Jia

Journal volume & issue
Vol. 39, no. 1
pp. 1 – 15


Read online

Abstract Background Exosomes are vesicles of endocytic origin released by various cell types and emerging as important mediators in tumor cells. Human metastases-associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA known to promote cell proliferation, metastasis, and invasion in colorectal cancer (CRC). Methods The expression of MALAT1 was analyzed in CRC using qRT-PCR. FUT4 and fucosylation levels were detected in CRC clinical samples and CRC cell lines by immunofluorescent staining, western blot and lectin blot analysis. CRC derived exosomes were isolated and used to examine their tumor-promoting effects in vitro and in vivo. Results The invasive and metastatic abilities of primary CRC cells were enhanced after exposure to exosomes derived from highly metastatic CRC cells, which increased the fucosyltransferase 4 (FUT4) levels and fucosylation not by directly transmitting FUT4 mRNA. Exosomal MALAT1 increased FUT4 expresssion via sponging miR-26a/26b. Furthermore, MALAT1/miR-26a/26b/FUT4 axis played an important role in exosome-mediated CRC progression. Exosomal MALAT1 also mediated FUT4-associated fucosylation and activated the PI3K/AKT/mTOR pathway. Conclusions These data indicated that exosomal MALAT1 promoted the malignant behavior of CRC cells by sponging miR-26a/26b via regulating FUT4 and activating PI3K/Akt/mTOR pathway.