Scientific Reports (Aug 2017)

The laccase-like reactivity of manganese oxide nanomaterials for pollutant conversion: rate analysis and cyclic voltammetry

  • Xinghao Wang,
  • Jiaoqin Liu,
  • Ruijuan Qu,
  • Zunyao Wang,
  • Qingguo Huang

DOI
https://doi.org/10.1038/s41598-017-07913-2
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Nanostructured manganese oxides, e.g. MnO2, have shown laccase-like catalytic activities, and are thus promising for pollutant oxidation in wastewater treatment. We have systematically compared the laccase-like reactivity of manganese oxide nanomaterials of different crystallinity, including α-, β-, γ-, δ-, and ɛ-MnO2, and Mn3O4, with 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS) and 17β-estradiol (E2) as the probing substrates. The reaction rate behaviors were examined with regard to substrate oxidation and oxygen reduction to evaluate the laccase-like catalysis of the materials, among which γ-MnO2 exhibits the best performance. Cyclic voltammetry (CV) was employed to assess the six MnOx nanomaterials, and the results correlate well with their laccase-like catalytic activities. The findings help understand the mechanisms of and the factors controlling the laccase-like reactivity of different manganese oxides nanomaterials, and provide a basis for future design and application of MnOx-based catalysts.