Journal of Lipid Research (Aug 2016)

Brefeldin A promotes the appearance of oligosaccharyl phosphates derived from Glc3Man9GlcNAc2-PP-dolichol within the endomembrane system of HepG2 cells

  • Ahmad Massarweh,
  • Michaël Bosco,
  • Soria Iatmanen-Harbi,
  • Clarice Tessier,
  • Laura Amana,
  • Patricia Busca,
  • Isabelle Chantret,
  • Christine Gravier-Pelletier,
  • Stuart E.H. Moore

Journal volume & issue
Vol. 57, no. 8
pp. 1477 – 1491

Abstract

Read online

We reported an oligosaccharide diphosphodolichol (DLO) diphosphatase (DLODP) that generates dolichyl-phosphate and oligosaccharyl phosphates (OSPs) from DLO in vitro. This enzyme could underlie cytoplasmic OSP generation and promote dolichyl-phosphate recycling from truncated endoplasmic reticulum (ER)-generated DLO intermediates. However, during subcellular fractionation, DLODP distribution is closer to that of a Golgi apparatus (GA) marker than those of ER markers. Here, we examined the effect of brefeldin A (BFA), which fuses the GA with the ER on OSP metabolism. In order to increase the steady state level of truncated DLO while allowing formation of mature DLO (Glc3Man9GlcNAc2-PP-dolichol), dolichyl-P-mannose Man7GlcNAc2-PP-dolichol mannosyltransferase was partially downregulated in HepG2 cells. We show that BFA provokes GA endomannosidase trimming of Glc3Man9GlcNAc2-PP-dolichol to yield a Man8GlcNAc2-PP-dolichol structure that does not give rise to cytoplasmic Man8GlcNAc2-P. BFA also strikingly increased OSP derived from mature DLO within the endomembrane system without affecting levels of Man7GlcNAc2-PP-dolichol or cytoplasmic Man7GlcNAc2-P. The BFA-provoked increase in endomembrane-situated OSP is sensitive to nocodazole, and BFA causes partial redistribution of DLODP activity from GA- to ER-containing regions of density gradients. These findings are consistent with BFA-provoked microtubule-dependent GA-to-ER transport of a previously reported DLODP that acts to generate a novel endomembrane-situated OSP population.

Keywords