MATEC Web of Conferences (Jan 2017)
Prediction of springback in V-die air bending process by using finite element method
Abstract
Springback phenomenon affects the dimensional and geometrical accuracy of the bent parts. The prediction of springback is a key problem in sheet metal forming. The aim of this paper is the numerical analysis of the possibility to predict the springback of anisotropic steel sheets. The experiments are conducted on 40 x 100 mm steel sheets. The mechanical properties of the sheet metals have been determined through uniaxial tensile tests of samples cut along three directions with respect to the rolling direction. The numerical model of air V-bending is built in finite element method (FEM) based ABAQUS/Standard 2016.HF2 (Dassault Systemes Simulia Corp., USA) program. The FEM results were verified by experimental investigations. The simulation model has taken into consideration material anisotropy and strain hardening phenomenon. The results of FEM simulations confirmed the ability of numerical prediction of springback amount. It was also found that the directional microstructure of the sheet metal resulted from rolling process affects the elastic-plastic deformation of the sheets through the sample width.