Applied Microbiology (May 2024)

<i>TRI14</i> Is Critical for <i>Fusarium graminearum</i> Infection and Spread in Wheat

  • Guixia Hao,
  • Robert H. Proctor,
  • Daren W. Brown,
  • Nicholas A. Rhoades,
  • Todd A. Naumann,
  • HyeSeon Kim,
  • Santiago Gutiėrrez,
  • Susan P. McCormick

DOI
https://doi.org/10.3390/applmicrobiol4020058
Journal volume & issue
Vol. 4, no. 2
pp. 839 – 855

Abstract

Read online

Trichothecenes are sesquiterpenoid toxins produced by diverse ascomycetes, including Fusarium. The trichothecene analog deoxynivalenol (DON) produced by the Fusarium head blight (FHB) pathogen Fusarium graminearum is a virulence factor on wheat and a major food and feed safety concern. In Fusarium, the trichothecene biosynthetic gene (TRI) cluster consists of 7–14 genes. Most TRI cluster genes are conserved and their specific roles in trichothecene biosynthesis have been determined. An exception is TRI14, which is not required for DON synthesis in vitro but is required for spread of F. graminearum in wheat heads. In the current study, gene expression analyses revealed that TRI14 was highly induced in infected wheat heads. We demonstrated that TRI14 was not only required for F. graminearum spread but also important for initial infection in wheat. Although a prior study did not detect DON in infected seeds, our analyses showed significantly less DON and fungal biomass in TRI14-mutant (designated ∆tri14)-inoculated heads than wild-type-inoculated heads. Gene expression comparison showed that the level of expression of TRI genes was similar in the wheat tissues infected with ∆tri14 or the wild type, indicating the reduced toxin levels caused by ∆tri14 may be due to less fungal growth. ∆tri14 also caused less lesion and grew less in wheat coleoptiles than the wild type. The growth of ∆tri14 in carboxymethylcellulose medium was more sensitive to hydrogen peroxide than the wild type. The data suggest that TRI14 plays a critical role in F. graminearum growth, and potentially protects the fungus from plant defense compounds.

Keywords