Nanomaterials (Nov 2020)

Internal Structure of Thermoresponsive Physically Crosslinked Nanogel of Poly[<i>N</i>-(2-hydroxypropyl)methacrylamide]-<i>Block</i>-Poly[<i>N</i>-(2,2-difluoroethyl)acrylamide], Prominent <sup>19</sup>F MRI Tracer

  • David Babuka,
  • Kristyna Kolouchova,
  • Ondrej Groborz,
  • Zdenek Tosner,
  • Alexander Zhigunov,
  • Petr Stepanek,
  • Martin Hruby

DOI
https://doi.org/10.3390/nano10112231
Journal volume & issue
Vol. 10, no. 11
p. 2231

Abstract

Read online

Fluorine-19 MRI is a promising noninvasive diagnostic method. However, the absence of a nontoxic fluorine-19 MRI tracer that does not suffer from poor biodistribution as a result of its strong fluorophilicity is a constant hurdle in the widespread applicability of this otherwise versatile diagnostic technique. The poly[N-(2-hydroxypropyl)methacrylamide]-block-poly[N-(2,2-difluoroethyl)acrylamide] thermoresponsive copolymer was proposed as an alternative fluorine-19 MRI tracer capable of overcoming such shortcomings. In this paper, the internal structure of self-assembled particles of this copolymer was investigated by various methods including 1D and 2D NMR, dynamic light scattering (DLS), small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS). The elucidated structure appears to be that of a nanogel with greatly swollen hydrophilic chains and tightly packed thermoresponsive chains forming a network within the nanogel particles, which become more hydrophobic with increasing temperature. Its capacity to provide a measurable fluorine-19 NMR signal in its aggregated state at human body temperature was also investigated and confirmed. This capacity stems from the different fluorine-19 nuclei relaxation properties compared to those of hydrogen-1 nuclei.

Keywords