Applied Sciences (Nov 2022)
Buckling of Composite Structures with Delaminations—Laminates and Functionally Graded Materials
Abstract
In the present paper, buckling problems of constructions with single delamination are examined. Structures were made of unidirectional laminates and functionally graded materials (FGM). Two types of delaminations (closed and opened) were both investigated in experiments both in rectangular plates and axi-symmetric shells. The first part of the work is devoted to the formulation of contact problems (embedded, closed delaminations) with the aid of various functional inequalities. Then, computational models are discussed. To study the influence of the variable material configuration of FGMs, the fourth-order plate/shell relations were adopted. Finally, three particular problems examined are the buckling of flat rectangular plates, spherical shells, and compressed rectangular plates with elliptical delaminations. The experiments were conducted using imperfection sensitivity analysis and post-buckling non-linear analysis. The results demonstrate that the unsymmetric configurations of FGM structures lead to the reduction of buckling loads for structures with delaminations. For FG structures, those effects are described by the simple coefficient. Linear fracture mechanics were employed to distinguish the form of unilateral boundary problems (closed or opened). In the first case, the stable variations of the strain energy release rate GI with the delamination length variations were observed, whereas in the second case the unstable variations were observed.
Keywords