Remote Sensing (Aug 2020)

Crop Mapping from Sentinel-1 Polarimetric Time-Series with a Deep Neural Network

  • Yang Qu,
  • Wenzhi Zhao,
  • Zhanliang Yuan,
  • Jiage Chen

DOI
https://doi.org/10.3390/rs12152493
Journal volume & issue
Vol. 12, no. 15
p. 2493

Abstract

Read online

Timely and accurate agricultural information is essential for food security assessment and agricultural management. Synthetic aperture radar (SAR) systems are increasingly available in crop mapping, as they provide all-weather imagery. In particular, the Sentinel-1 sensor provides dense time-series data, thus offering a unique opportunity for crop mapping. However, in most studies, the Sentinel-1 complex backscatter coefficient was used directly which limits the potential of the Sentinel-1 in crop mapping. Meanwhile, most of the existing methods may not be tailored for the task of crop classification in time-series polarimetric SAR data. To solve the above problem, we present a novel deep learning strategy in this research. To be specific, we collected Sentinel-1 time-series data in two study areas. The Sentinel-1 image covariance matrix is used as an input to maintain the integrity of polarimetric information. Then, a depthwise separable convolution recurrent neural network (DSCRNN) architecture is proposed to characterize crop types from multiple perspectives and achieve better classification results. The experimental results indicate that the proposed method achieves better accuracy in complex agricultural areas than other classical methods. Additionally, the variable importance provided by the random forest (RF) illustrated that the covariance vector has a far greater influence than the backscatter coefficient. Consequently, the strategy proposed in this research is effective and promising for crop mapping.

Keywords