Background: So far, there is no non-invasive method that can popularize the genetic testing of thalassemia (TM) patients on a large scale. The purpose of the study was to investigate the value of predicting the α- and β- genotypes of TM patients based on a liver MRI radiomics model. Methods: Radiomics features of liver MRI image data and clinical data of 175 TM patients were extracted using Analysis Kinetics (AK) software. The radiomics model with optimal predictive performance was combined with the clinical model to construct a joint model. The predictive performance of the model was evaluated in terms of AUC, accuracy, sensitivity, and specificity. Results: The T2 model showed the best predictive performance: the AUC, accuracy, sensitivity, and specificity of the validation group were 0.88, 0.865, 0.875, and 0.833, respectively. The joint model constructed from T2 image features and clinical features showed higher predictive performance: the AUC, accuracy, sensitivity, and specificity of the validation group were 0.91, 0.846, 0.9, and 0.667, respectively. Conclusion: The liver MRI radiomics model is feasible and reliable for predicting α- and β-genotypes in TM patients.