IEEE Access (Jan 2019)

Dynamically Tunable Scattering Manipulation of Dielectric and Conducting Cylinders Using Nanostructured Graphene Metasurfaces

  • Zahra Hamzavi-Zarghani,
  • Alireza Yahaghi,
  • Ladislau Matekovits

DOI
https://doi.org/10.1109/ACCESS.2019.2894760
Journal volume & issue
Vol. 7
pp. 15556 – 15562

Abstract

Read online

Nanostructured graphene metasurface is considered for the dynamically tunable scattering manipulation of dielectric and conducting cylinders. It is analytically shown that changing scattering width of dielectric and conducting cylinders into one of the cylinders with desired radii is possible. To achieve this purpose, the required surface impedance of the covering metasurface is derived. By properly tuning the chemical potential of the graphene, the given cylinder can controllably be seen as one with larger or smaller radii without changing the geometry of the metasurface. The simulation results of the scattering width and the 3-D far-field radar cross-section of the cylinders verify the analytical approach.

Keywords