Baghdad Science Journal (Jul 2024)
Molecular Docking, Synthesis and Evaluation for Antioxidant and Antibacterial Activity of New Oxazepane and Benzoxazepine Derivatives
Abstract
In the field of molecular simulations, molecular docking is a method that can determine the optimal and preferred orientation of a certain molecule related to another when they are coupled to create a stable complex. The strength of the association, or binding affinity, between two molecules can be predicted using knowledge of their preferred orientation. In this study, a series of prepared compounds were evaluated for their binding modes, potential interactions, and target binding locations. Some derivatives 1,3-oxazepane, and 1,3-benzoxazepine were prepared from three Schiff bases compounds (1S-3S). The compounds (1S-3S) were reacted with succinic anhydride and phthalic anhydride to obtain derivatives of 1,3- oxazepane and 1,3-benzoxazepine (1B-3C). The characterization of prepared compounds was achieved by methods of elemental analysis, FT-IR, 1H, and 13C-NMR spectral analysis. The antibacterial activity of the compounds (1B-3C) was recorded against some isolated bacteria including gram-negative (Staphylococcus aureus), and gram-positive (E.coli) in parallel with Amoxicillin as a regular drug. Compounds (1B-3C) exhibited good values as antibacterial spreading from middling to perfect against the bacteria strains. Moreover, the antioxidant activity of the synthesized compounds (1B-3C) was evaluated using 2,2-diphenyl-1-picrylhydrazyl. The results showed that compounds have the highest values as radical scavenging.
Keywords