Agriculture (Sep 2024)

Simulation and Testing of Grapevine Branch Crushing and Collection Components

  • Lei He,
  • Zhimin Wang,
  • Long Song,
  • Pengyu Bao,
  • Silin Cao

DOI
https://doi.org/10.3390/agriculture14091583
Journal volume & issue
Vol. 14, no. 9
p. 1583

Abstract

Read online

Aiming at the problem of the low rate of resource utilization of large amounts of grape branch pruning and the high cost of leaving the garden, we design a kind of grape branch picking and crushing collection machine that integrates the collection of strips, the picking up, crushing, and collecting operations. The crushing and collecting parts of the machine are simulated, analyzed, and tested. Using the method of numerical simulation, combined with the results of the pre-branch material properties measurement, the branch crushing process is simulated based on LS-DYNA software. Our analysis found that in the branch destruction process, not only does knife cutting exist, but the bending fracture of the opposite side of the cutting place also exists. With the increase in the knife roller speed, the cutting resistance of the tool increases, reaching 2690 N at 2500 r/min. In the cutting simulation under different tool edge angles, the cutting resistance of the tool is the smallest when the edge angle is 55°, which is 1860 N, and this edge angle is more suitable for branch crushing and cutting. In the cutting simulation under different cutting edge angles, the cutting resistance of the tool is the smallest when the edge angle is 55°, which is 1860 N, and this edge angle is more suitable for branch crushing and cutting. Using Fluent software to analyze the characteristics of the airflow field of the pulverizing device, it was found that with the increase in the knife roller speed, the inlet flow and negative pressure of the pulverizing chamber increase. When the knife roller speed is 2500 r/min, the inlet flow rate and negative pressure are 1.92 kg/s and 37.16 Pa, respectively, which will be favorable to the feeding of the branches, but the speed is too high and will also lead to the enhancement of the vortex in some areas within the pulverizing device, which will in turn affect the feeding of the branches as well as the throwing out of pulverized materials. Therefore, the speed range of the pulverizing knife roller was finally determined to be 1800~2220 r/min. Based on the ANSYS/Model module modal analysis of the crushing knife roller, the knife roller of the first six orders of the intrinsic frequency and vibration pattern, the crushing knife roller of the lowest order had a modal intrinsic frequency of 137.42 Hz, much larger than the crushing knife roller operating frequency of 37 Hz, above which the machine will not resonate during operation. The research results can provide a theoretical basis and technical support for other similar crops to be crushed and collected.

Keywords