Robotics (Dec 2022)
Feasibility and Application of the B.E.A.T. Testbed for Assessing the Effects of Lower Limb Exoskeletons on Human Balance
Abstract
Assessing the performance of exoskeletons in assisting human balance is important for their design process. This study proposes a novel testbed, the B.E.A.T (Balance Evaluation Automated Testbed) to address this aim. We applied the B.E.A.T to evaluate how the presence of a lower limb exoskeleton influenced human balance. The B.E.A.T. consists of a robotic platform, standardized protocols, and performance indicators. Fifteen healthy subjects were enrolled and subjected to repeatable step-type ground perturbations in different directions using the multi-axis robotic platform. Each participant performed three trials, both with and without the exoskeleton (EXO and No-EXO conditions). Nine performance indicators, divided into kinematic and body stability indicators, were computed. The reliability of performance indicators was assessed by computing the Inter Class Correlation (ICC). The indicators showed good (0.60 ≤ ICC < 0.75) to excellent (ICC ≥ 0.75) reliability. The comparison between the EXO and No-EXO conditions revealed a significant increase in the joint range of motion and the center of pressure displacement while wearing the exoskeleton. The main differences between the EXO and No-EXO conditions were found in the range of motion of the knee joints, with an increment up to 17° in the sagittal plane.
Keywords