npj Flexible Electronics (Oct 2024)
Flexible electronic-photonic 3D integration from ultrathin polymer chiplets
Abstract
Abstract Integrating flexible electronics and photonics can create revolutionary technologies, but combining these components on a single polymer device has been difficult, particularly for high-volume manufacturing. Here, we present a robust chiplet-level heterogeneous integration of polymer-based circuits (CHIP), where ultrathin polymer electronic and optoelectronic chiplets are vertically bonded at room temperature and shaped into application-specific forms with monolithic Input/Output (I/O). This process was used to develop a flexible 3D integrated optrode with high-density microelectrodes for electrical recording, micro light-emitting diodes (μLEDs) for optogenetic stimulation, temperature sensors for bio-safe operations, and shielding designs to prevent optoelectronic artifacts. CHIP enables simple, high-yield, and scalable 3D integration, double-sided area utilization, and miniaturization of connection I/O. Systematic characterization demonstrated the scheme’s success and also identified frequency-dependent origins of optoelectronic artifacts. We envision CHIP being applied to numerous polymer-based devices for a wide range of applications.