Cancer Nanotechnology (Mar 2020)
Reducing the effective dose of cisplatin using gold nanoparticles as carriers
Abstract
Abstract Nanotechnology is a frequent treatment for cancer. Nanomaterials are the vehicles which deliver drugs in smaller but equally effective quantities. The aim of this investigation is to synthesize gold nanoparticles, functionalize them for the transportation of cisplatin and release them to the cancer-affected area. They have the same cytotoxicity as conventional treatments but with the smallest effective quantity of cisplatin. We synthesized spherical gold nanoparticles using the Turkevich method. We functionalized them with polyethylene glycol and cisplatin, adapting the method used by Sun. Using electronic transmission microscopy, Dynamic Light Scattering and potential Z, we analyzed the size, hydrodynamic size, shape and stability of the synthesized nanoparticles. We analyzed their composition using images from scanning electronic microscopy to carry out energy dispersive spectroscopy measurements, ultraviolet/visible light spectroscopy and Fourier transform infrared spectroscopy. We used MTT tests to find cell viability and obtained the IC50 of the different cancer cell lines. The synthesized nanoparticles were spherical in shape and, after functionalization, were of the core–shell type. They contain approximately 7% cisplatin. The IC50 obtained diminished approximately 7 times (compared to the IC50 of cisplatin used alone) when using the gold nanoparticles. Therefore, this study opens up the possibility of an alternative way of transporting the cisplatin anticancer drug, using gold nanoparticles. It decreases the dose and has the same effect as the cisplatin, so that the undesired side effects decrease.
Keywords