Science and Engineering of Composite Materials (Nov 2017)
Numerical study of Ti/Al/Mg three-layer plates on the interface behavior in explosive welding
Abstract
In this study, a finite element model of the explosive welding process of three-layer plates composed of Ti/Al/Mg was established, and the interfacial behaviors of three-layer plates were researched. We investigated the influences that affect the quality of explosive bonding and explored the influence factors of variable physical parameters in the simulation. The finite difference engineering package AUTODYN with the smoothed particle hydrodynamics method has been used to model the collision in this work. The von Mises strength model was used to describe the behavior of Ti/Al/Mg composite plates. Wave morphology on the Al/Mg interface and straight morphology on the Ti/Al interface were produced in this study; meanwhile, jet phenomenon occurred obviously in the simulation process. The contours of velocity, pressure, shear stress, and effective plastic strain of Ti/Al/Mg were also discussed. The result of X-direction velocity showed a delay in time and location of collision point between the Ti/Al and the Al/Mg interface. The detonation point was the minimum pressure, and the collision point was the maximum pressure compared with other sections. The value of effective plastic strain must exceed a threshold to obtain a good bonding, and the shear stress was of opposite sign in the simulation.
Keywords