We demonstrate high-definition, direct-printing of micron-scale metallic dots, comprised of close-packed gold nanoparticles, by utilizing the optical vortex laser-induced forward transfer technique. We observe that the spin angular momentum of the optical vortex, associated with circular polarization, assists in the close-packing of the gold nanoparticles within the printed dots. The printed dots exhibit excellent electrical conductivity without any additional sintering processes. This technique of applying optical vortex laser-induced forward transfer to metallic dots is an innovative approach to metal printing, which does not require additional sintering. It also serves to highlight new insights into light–matter interactions.