Nuclear Engineering and Technology (Feb 2024)

Experimental investigation on heat transfer of nitrogen flowing in a circular tube

  • Chenglong Wang,
  • Yuliang Fang,
  • Wenxi Tian,
  • Guanghui Su,
  • Suizheng Qiu

Journal volume & issue
Vol. 56, no. 2
pp. 463 – 471

Abstract

Read online

Average and local convective heat transfer coefficients of nitrogen are measured experimentally in an electrically heated circular tube for a range of Reynolds number from 1.08 × 104 to 3.60 × 104, and wall-to-bulk temperature ratio from 1.01 to 1.77. The exit Mach number is up to 0.17, and the heat flux is up to 46 kW·m−2. The molybdenum test section has a 62 diameters heated section with an inside diameter of 5 mm and a 30 diameters entrance section to ensure the fully-developed flow. Uncertainty of Nusselt number is less than 1.6 % in this study. The results indicate that the average heat transfer correlations evaluated by both the bulk and the modified film Reynolds numbers agree well with the experimental data. The local heat transfer results based on bulk properties are compared with previous empirical correlations. New prediction correlations are recommended which are significantly affected by the property variation and heated length. The comparison between the proposed correlations and experimental points shows that 88 % of experimental data fall into an error of 10 %, and almost all data are within an error of 20 %.

Keywords