Journal of Food Quality (Jan 2020)

Chemical Composition, Antioxidant Activity, and Antifungal Effects of Essential Oil from Laurus nobilis L. Flowers Growing in Morocco

  • Ibrahim Mssillou,
  • Abdelkrim Agour,
  • Asmae El Ghouizi,
  • Noureddine Hamamouch,
  • Badiaa Lyoussi,
  • Elhoussine Derwich

DOI
https://doi.org/10.1155/2020/8819311
Journal volume & issue
Vol. 2020

Abstract

Read online

In this study, the chemical composition and the antioxidant and antifungal activities of essential oil from Laurus nobilis flowers were examined. The essential oil was prepared using steam distillation in a modified Clevenger-type apparatus. The chemical composition of the obtained essential oil and chemotypes was determined using gas chromatography coupled with mass spectrometry (GC/MS) and gas chromatography with flame ionization detection (GC-FID). Twenty-five volatile compounds were identified, which made up 92.07% of the total essential oil content. The essential oil yield was 1.06% and the most abundant compounds were 1.8-cineole (45.01%), α-caryophyllene (7.54%), germacradienol (6.13%), limonene (4.69%), α-pinene (3.04%), and germacrene D (3.14%). The antifungal activity of the obtained essential oil was tested against seven fungal strains: Aspergillus clavatus, A. niger, Chaetomium globosum, Cladosporium cladosporioides, Myrothecium verrucaria, Penicillium citrinum, and Trichoderma viride. The results indicated that essential oil from L. nobilis flowers exhibited significant antifungal activity against the tested fungal strains with minimum inhibitory concentrations (MICs) ranging from 0.05 to 0.46 mg/mL. The essential oil of L. nobilis also exhibited strong total antioxidant capacity (TAC) as indicated by its ability to scavenge free radical DPPH. Taken together, this study indicates that the essential oil from L. nobilis flowers possesses significant antifungal and antioxidant activities, possibly due to the high level of 1,8-cineole.