Applied Sciences (Jan 2022)

Identification of Track Stability Model Parameters Based on Numerical Experiments

  • Dorota Błaszkiewicz-Juszczęć,
  • Włodzimierz Czyczuła,
  • Dariusz Kudła

DOI
https://doi.org/10.3390/app12020570
Journal volume & issue
Vol. 12, no. 2
p. 570

Abstract

Read online

In the article, an identification method of railway track stability model parameters based on energy equilibrium is presented by the authors. A study of two parameters directly influencing the continuous welded track (CWR) stability is described by the authors, i.e., the rail-sleeper structure stiffness Bz is considered one beam, and the ballast lateral resistance r0. These parameters were estimated with the use of a numerical model for various railway track types. The adopted concept is based on the assumption that it is possible to determine substitute values for both parameters. Therefore, using one value of both of these parameters, we label them substitute parameters. The assumed numerical model forced lateral displacements of a track section, and, based on the obtained track section displacement results, energy equilibrium was determined. The equilibrium takes into account the work of external load and the bending work of rail-sleeper structure with the substitute stiffness Bz and the ballast deformation work, also with the substitute value of lateral resistance r0 with lateral displacement. The aim is to identify these substitute values to be used for analysing track stability with the semi-analytical model. These analyses are part of the studies related to the development of a method of assessing various methods of increasing track stability.

Keywords