Applied Sciences (Feb 2019)

An Adaptive Neuro-Fuzzy Inference Model to Predict Punching Shear Strength of Flat Concrete Slabs

  • Mohammed A. Mashrei,
  • Alaa M. Mahdi

DOI
https://doi.org/10.3390/app9040809
Journal volume & issue
Vol. 9, no. 4
p. 809

Abstract

Read online

An adaptive neuro-fuzzy inference system (ANFIS)-based model was developed to predict the punching shear strength of flat concrete slabs without shear reinforcement. The model was developed using a database collected from 207 experiments available in the existing literature. Five key input parameters were used to build the model, which were slab effective depth, concrete strength, reinforcement ratio, yield tensile strength of reinforcement, and width of square loaded area. The output parameter of the model was punching shear strength. The results from the adaptive neural fuzzy inference model were compared to those from the simplified punching shear equations of ACI, BS-8110, Model Code 2010, Euro-Code 2, and also experimental results. The root mean square error (RMSE) and the correlation coefficient (R) were used as evaluation criteria. Parametric studies were presented using ANFIS to assess the effect of each input parameter on the punching shear strength and to compare ANFIS results to those from the equations proposed in commonly used codes. The results showed that the ANFIS model is simple and provided the most accurate predictions of the punching shear strength of two-way flat concrete slabs without shear reinforcement.

Keywords