Journal of Applied Science and Engineering (Aug 2023)

INFLUENCE OF A MAGNETIC FIELD ON THE CHARACTERISTICS OF A P-N JUNCTION DIODE

  • Gafur Gulyamov,
  • Gulnoza Majidova,
  • Feruza Muhitdinova

DOI
https://doi.org/10.6180/jase.202401_27(1).0007
Journal volume & issue
Vol. 27, no. 1
pp. 1911 – 1917

Abstract

Read online

Diodes are widely used in engineering. Therefore, it is very important to study the sensitivity of the characteristics to external influences. In this work, the influence of a magnetic field on the current-voltage characteristics (CVC) of a diode with a p-n junction is studied. Under the action of a magnetic field, the CVC of the diode, obtained in the experiments, shifted to the right. Under the action of a magnetic field, a decrease in current was observed even at high voltages. The theoretical foundations of this physical process have not been described in previous works. We explained these processes by the following reasons: the appearance of additional resistance at the p–n junction due to the magnetoresistance effect. As a result, the resistance of the diode increases, and the current also changes as a result of the Hall effect. The Lorentz force in a magnetic field affects the direction of movement of charge carriers in a space charge. This causes a change in the shape of the space charge and an increase in the potential barrier. These theoretical foundations were calculated from formulas and compared with experiments. In addition, changes in CVC in a magnetic field are also related to the coefficient of imperfection. The coefficient of imperfection depends on the diffusion length. The magnetic field affects the diffusion length. As a result, we explain the changes in CVC depending on the diffusion length by the nonideality coefficient. The change in the space charge of the diode under the action of a magnetic field can be explained by the Hall voltage, and the change in CVC can be explained by the magnetoresistance and the nonideality coefficient. Theoretical foundations are compared with experimental results and correspondences are determined. Conclusions are drawn from the compatibility of experience and our theoretical basis.

Keywords